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Volatility and models based on the extreme value theory  
for gold returns 
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Abstract 

In this study, we use daily gold log-returns to analyse the quality of forecasting expected 
shortfalls (ES) using volatility and models based on the extreme value theory (EVT). 
ES forecasts were calculated for conditional APARCH models formed on the entire 
distribution of returns, as well as for EVT models. The results of ES forecasts for each model 
were verified using the backtesting procedure proposed by Acerbi and Szekely. The results 
show that EVT models provide more accurate one-day ahead ES forecasts compared to the 
other models. Moreover, the asymmetric theoretical distributions for innovations of EVT 
models allow the improvement of the accuracy of ES forecasting. 
Key words: expected shortfall, volatility models, EVT, gold returns, backtesting. 

1.  Introduction 

Economic processes observed in the contemporary world are very complex, varied 
and unpredictable. This is due to the variety of information that flows into the market. 
Information derives from data, which represent specific facts generated by the reality. 
An appropriate understanding of the nature of data is crucial in the decision-making 
process, for investment decisions. The last decade has also seen an increasing interest 
in other forms of investment of financial assets than those offered by the classical capital 
market. This is largely due to the uncertainty and unpredictability of the direction of 
the global economy. The crisis of 2008–2009 caused those investors to decide to transfer 
capital into other, alternative assets. One of them is gold. The main reason for seeking 
new markets is the aim to minimize the risk of undertaken investment activity and to 
hedge positions against adverse trends in the global economy. 
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Risk is an integral part of any investment activity. By understanding the sources 
and factors generating risk, it is possible to manage it efficiently and to minimize its 
adverse consequences. Risk management is related to the decision-making process and 
the identification of tools allowing for risk reduction, as well as the construction of 
strategies enabling its monitoring and reporting. The measurement of risk using an 
appropriate measure is an important part of the risk management process. The Basel 
Committee on Banking Supervision based on the Basel III document (the Third Basel 
Accord or Basel Standards) recommends some risk measures that should be used by 
financial institutions and investors to ensure adequate capital reserves. These include 
Value-at-Risk proposed by Risk Metrics, but also Expected Shortfall, which is some 
extension of VaR. 

Value-at-Risk, as a measure of risk, was proposed in 1994 by the US financial 
institution J.P. Morgan, whose analysts developed a risk management system 
commonly known as RiskMetrics™. VaR is defined as a statistical measure that assesses 
(in an unambiguous way) the amount of potential loss in the market value of a financial 
instrument for which the probability of reaching or exceeding it within a specified time 
horizon is equal to a tolerance level established by the decision maker [Dowd, 1999; 
Trzpiot, 2004; Doman, Doman, 2009]. The Expected Shortfall (ES), on the other hand, 
is a risk measure that expresses the expected value of return at a level exceeding VaR. 
It is commonly known in the literature as Conditional VaR (CVaR). Its advantage over 
the discussed VaR consists in the fact that VaR determines the minimum loss from an 
investment in α possible cases, and thus it unambiguously determines a certain 
threshold of return. In contrast, the ES focuses also on values exceeding VaR, 
determining the average level of losses in the conditional sense. Additionally, the ES, 
unlike VaR, satisfies all conditions of a coherent risk measure: the condition of 
monotonicity, subadditivity, positive homogeneity and translation invariance [Artzner 
et al. 1999], so it can be used as an evaluation for risk in the case of complex portfolio 
structures. 

Validation of VaR and ES risk measures aims to verify that the estimated risk 
measure reliably assesses the actual risk under the given assumptions. The methods of 
such verification are referred to as backtesting methods. Backtesting is a statistical 
procedure in which actual profits and losses are compared with the corresponding 
estimates of the risk measure. The backtesting process verifies the hypothesis that the 
frequency of occurrence of return over a specified period is consistent with an assumed 
level of significance. Such tests are referred to as unconditional coverage tests. The 
implementation and application of these tests are generally straightforward, as they do 
not consider the point at which the significance level is exceeded. However, from 
a theoretical point of view, a correct model for risk assessment should not only provide 
an estimate of the appropriate level of exceedances but also verify that they are 
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uniformly distributed over time, i.e. independent of each other. Clustering of 
exceedances indicates that the model does not accurately capture market volatility and 
correlations. Such tests that consider the dynamic aspect of exceedances and their 
independence are referred to as the conditional coverage tests [Jorion, 2001]. 

In this article, we attempt to assess the volatility of gold returns. Modeling gold 
returns can provide valuable insights that help understand the volatility in the market 
of other financial assets. Gold is often seen as a "safe haven" and its price often behaves 
differently than other financial assets during times of economic uncertainty. 
Investments in gold have many unique characteristics that make them attractive in 
today's complex financial world. Gold is often seen as a "safe haven" during times of 
economic and financial uncertainty. When other assets such as stocks or bonds 
experience significant declines, investors often turn to gold, which usually leads to 
a price increase. Gold is an asset of particular importance for hedging and 
diversification of investment portfolios, and therefore it is important to predict future 
volatility of this asset. Gold is also seen as an effective hedge against inflation. When the 
value of money decreases, the value of gold often rises, which can help preserve the real 
value of an investment. Another important fact about gold is related to investment risk. 
Gold exhibits low correlation with many other asset classes, meaning that its price often 
behaves differently than other investments. Therefore, adding gold to a portfolio can 
help diversify risk. Moreover, gold is one of the most universally accepted assets 
worldwide and can be sold almost anywhere. In addition, gold is a very liquid asset, 
meaning it can be easily bought and sold [Li et al., 2022]. 

Given the above, we compare volatility models and EVT models for forecasting 
extreme risk (ES) and then we apply the approach to backtesting ES proposed by Acerbi 
and Szekely [Acerbi et al., 2014]. The paper consists of the following sections. Section 2 
reviews the literature on VaR and ES risk measures including backtesting. Section 3 
describes the methodology used in the study: APARCH model of volatility and some 
basics of the Extreme Value Theory (EVT). Furthermore, extreme risk measures for 
volatility and EVT models are defined and the procedure for backtesting ES under the 
approach of Acerbi and Szekely is described. Section 4 presents the results of the 
empirical study on the example of gold returns, while in Section 5 all findings are 
summarized and commented. 

2.  Literature overview 

The problem of risk is a constant object of analysis of researchers around the world. 
There are many studies that discuss methods of risk measurement using appropriate 
measures, as well as demonstrate how these methods are used in practice. Risk is related 
to the issue of volatility, therefore a wide range of methods is based on models 
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describing volatility. In addition, research papers that concern analysis of volatility and 
risk mainly focus on assets such as stocks, foreign exchange rates, cryptocurrencies, 
while the application of these methods in alternative investments, such as gold, is less 
popular. 

Zijing and Zhang [Zijing et al., 2016] analyzed volatility in gold returns using 
GARCH-type models (GARCH, EGARCH, and TGARCH) with an error term 
described by GED distribution, while Włodarczyk [Włodarczyk, 2017] analyzed 
asymmetry and long memory effects on forecasting conditional volatility and risk in the 
gold and silver market using linear and nonlinear GARCH models. Naeem, Tiwari, 
Mubashra, and Shahbaz [Naeem et al., 2019] examined volatility on precious metals 
using Markov-Switching GARCH (MSGARCH) models. They revealed the existence of 
regime shifts in GARCH models and confirmed the advantages of regime-switched 
models over classical one-dimensional GARCH models. Mensi, Vinh Vo and Hoon 
Kang [Mensi et al., 2022] examined the volatility spillovers between the US stock 
market (S&P500) and both oil and gold before and during the global health crisis. They 
applied the FIAPARCH-DCC model to the 15-minute intraday data. They results 
showed negative (positive) conditional correlations between the S&P500 and gold (oil). 
Moreover, they indicated that gold offers more diversification gains than oil does 
during the pandemic. Vidal and Kristjanpoller [Vidal et al., 2020] investigated the 
forecast of gold volatility by combining two deep learning methodologies: short-term 
memory networks (LSTM) added to convolutional neural networks. They highlighted 
that these types of hybrid architectures have not been used in time series prediction. 
Their results showed a substantial improvement when this hybrid model was compared 
to the GARCH and LSTM models. Kayal and Maheswaran [Kayla et al., 2021] 
discovered the persistence of excess volatility in gold spot price data that engenders 
excessive path dependence, whereas it is not the same with silver. They used the extreme 
value estimator and the VRatio and observed that the strong mean-reverting 
characteristic in gold makes it a better investment choice than silver. Morales and 
Andreosso-O’Callaghan [Morales et al., 2021] showed that the daily returns of silver 
have a standard deviation which is more than twice that of gold. Elsayed, Gozgor and 
Yarovaya [Elsayed et al., 2022] examined the dynamic connectedness of return and 
volatility spillovers among cryptocurrency index (CRIX), gold, and uncertainty 
measures. Apart from traditional uncertainty measures, they also considered two novel 
uncertainty measures: Cryptocurrency Policy Uncertainty and Cryptocurrency Price 
Uncertainty indices. They observed that cryptocurrency policy uncertainty was the 
main transmitter of the return spillovers to other variables. In addition, gold was a net 
receiver of both the return and the volatility spillovers. 

In the literature, there are many papers on risk measurement, however, the vast 
majority concern the Value-at-Risk proposed by RiskMetrics™. Daníelsson, Jorgensen, 
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Samorodnitsky, Sarma and de Vries [Daníelsson et al., 2013] studied the properties of 
VaR. They showed that the VaR measure is subadditive in the corresponding tail region 
of the return distribution. They also noted that estimating VaR using the historical 
simulation method may lead to a violation of the subadditivity assumption. They 
proposed to estimate the VaR risk measure using semi-parametric extreme value theory 
(EVT) methods. Alexander and Sarabia [Alexander et al., 2012] proposed to estimate 
risk associated with a value-at-risk model and adjust VaR estimates with respect to 
estimation and model specification errors. Huang, Huang, Chikobvu, and Chinhamu 
[Huang et al., 2015] predicted VaR using extreme value theory (EVT) and generalized 
Pareto distribution (GPD). Other researchers analyzed the forecast quality of VaR 
estimation using GARCH models. This approach was adopted by Walid, Shawkat and 
Khuong [Walid et al., 2014] by using nonlinear FIAPARCH models. Yu, Yang, Wei and 
Lei [Yu et al., 2018] measured VaR using GARCH-type models, extreme value theory 
(EVT) and copula models. The results of backtesting showed that GARCH-EVT type 
models and Copula models were able to improve the accuracy of VaR estimation. 
In contrast, Cheung and Yuen [Cheung et al., 2020] introduced an uncertainty model 
for the distribution of returns and investigated the impact of this volatility on VaR using 
a worst-case scenario approach. They showed that the choice of loss model is significant 
when an uncertainty model is implemented. Fiszeder, Fałdziński and Molnar [Fiszeder 
et al., 2019] propose some modification of multivariate DCC model to calculate 
forecasts of VaR. They show that regardless of whether in-sample fit, covariance 
forecasts or value-at-risk forecasts are considered, the model they propose outperforms 
not only the standard DCC model, but also an alternative range-based DCC model. 

Cheng and Hung [Cheng et al., 2011] evaluated the asymmetry and kurtosis  
of returns distribution in the crude oil and metals market using skewed Student's t 
distribution and GARCH-type volatility models. The empirical results showed that the 
predictions of VaR obtained using skewed distribution were more accurate 
in comparison with a symmetric distribution. Eling [Eling, 2014] applied skewed 
Student's t distribution to risk analysis in insurance. They have shown that the skewed 
Student's t distribution is a notably promising distribution for modeling returns on 
assets such as stocks, bonds, monetary market instruments, and hedge funds. 
Fernandez-Perez, Frijns, Fuertes, and Miffre [Fernandez-Perez et al., 2018] analyzed 
the relationship between the skewness of the distribution of commodity futures and 
expected returns. 

When it comes to backtesting risk measures, most of the research papers focus on 
VaR. Only few works deal with Expected Shortfall. Jalal and Rockinger [Jalal et al., 2008] 
use a circular block bootstrap to consider the possible dependency among exceedances. 
Applying the two-step procedure, they found that ES forecasts captured actual 
shortfalls satisfactorily. Righi and Ceretta [Righi et al., 2015] evaluate unconditional, 
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conditional and quantile (expectile) regression-based models for ES predictions under 
the ES backtest approach proposed by McNeil and Frey [McNeil et al., 2000]. Clift, 
Costanzino and Curran [Clift et al., 2016] apply three approaches recently proposed 
in the literature for backtesting ES consider a GARCH volatility specification with 
normal distribution for ES forecasting. Kratz, Lok and McNeil [Kratz et al. 2019] 
demonstrate that backtests of the forecasting models used to derive ES can be based on 
a multinomial test of Value-at-Risk exceptions at several levels, using heavy-tailed 
distributions and GARCH volatility models. Bu, Liao, Shi, and Peng [Bu et al., 2019] 
propose a new method to capture the dynamics of ES across time horizons using 
wavelet analysis. Their results confirm that the different frequency components of stock 
returns exhibit different persistence. Lazar and Zhang [Lazar et al., 2019] propose to 
measure the model risk of Expected Shortfall as the optimal correction needed to pass 
several ES backtests. They also investigate properties of proposed measures of model 
risk using GARCH models. del Brio, Mora-Valencia and Perote [del Brio et al., 2020] 
apply backtesting techniques for both Value-at-Risk and Expected Shortfall under 
parametric and semi-nonparametric approaches for modeling commodity ETFs. They 
recommend the application of leptokurtic distributions and semi-nonparametric 
techniques to mitigate regulation concerns about global financial stability of 
commodity business. Argyropoulos and Panopoulou [Argyropoulos et al., 2019] 
reviews the major VaR and ES forecast evaluation methods and evaluates their 
performance under a common simulation and financial application framework. They 
suggest that focusing on specific individual hypothesis tests provides a more reliable 
alternative than the corresponding conditional coverage ones. Acereda, Leon and Mora 
[Acereda et al., 2020] calculate ES risk measure for distributions of cryptocurrencies 
using various error distributions and GARCH-type models. Their results highlight the 
importance of estimating ES for cryptocurrencies using a generalized GARCH model 
and a non-normal error distribution with at least two parameters. 

The method of modeling volatility using heavy-tailed distributions and Extreme 
Value Theory, which we present in this paper, is particularly relevant to extreme risk 
analysis. Many traditional methods of financial analysis assume that returns follow 
a normal distribution. However, in practice, returns often exhibit "heavy tails" meaning 
that extremely large gains or losses are more likely than a normal distribution would 
predict. Heavy-tailed distributions and EVT provide better modeling for these extreme 
events. On the other hand, analyzing heavy-tailed distributions and EVT can help 
investors understand the risk associated with potentially large losses. This knowledge 
can be useful in creating risk management strategies and diversifying portfolios. EVT 
is specifically designed for modeling and predicting extreme events. This can be 
especially useful for modeling the risk of a financial crisis or other "black swan" type 
events. Furthermore, using heavy-tailed distributions and EVT can increase the 
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credibility of financial modeling and forecasting results. Results based on these 
methods may be more robust to extreme events. 

3.  Methodology 

Considering vast types of processes observed in the world around us it is possible 
to detect unexpectable events that generate risk at a level very far from the expected 
one. That type of risk is called the extreme risk and is associated with events occurring 
with low probability, but if they do occur, they generate extreme losses [Jajuga, 2008]. 
If extreme risk analysis is of interest, the theory of extreme events plays a special role. 
Extreme statistics are used to estimate some characteristics which help to define rare 
events. These statistics are e.g. quantiles of empirical distributions of examined 
phenomena or parameters defining periods, in which the analyzed processes take some 
extreme values [Gumbel, 2004]. During last century we can list many examples of 
events that have caused various types of drastic changes in the market, for example 
Black Monday (19 Oct 1987), World Trade Center (11 Sept 2001), recent financial crisis 
(2008–2009), crisis on crude oil market (2014) or pandemic of COVID-19 (March 2020 
until present). All these events had a significant impact on the volatility of market 
processes and thus also on the level of risk. 

3.1.  Risk measures for conditional volatility models 

In this paper we consider the APARCH model for volatility [Ding et al., 1993]. 
APARCH, which stands for Asymmetric Power ARCH, is an extension of GARCH class 
models that introduces certain additional features. APARCH(1,1) is less complex than 
APARCH(p,q) models with higher orders p and q. Less complex models are usually 
easier to estimate, interpret, and validate. High model complexity can lead to 
overfitting, which means that the model fits the training data well but performs poorly 
on test data or new data. The main advantages of the APARCH model over other 
GARCH-type models are: 
• Modeling asymmetry (leverage effect): The APARCH model allows for the 

modeling of asymmetry, also known as the leverage effect, which is common 
in financial data. The leverage effect is the phenomenon where negative price 
changes have a greater impact on volatility than positive changes of the same 
magnitude. Most standard GARCH models do not account for this effect. 

• Flexibility in modeling extreme events: The APARCH model allows for more 
flexibility in modeling extreme events (known as 'fat tails'), which are often 
observed in financial data. 

• Powering of variance: The APARCH model allows for the powering of the 
variance (or conversely, the standard deviation) to any non-necessarily integer 
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power. This feature is useful in situations where we care about modeling the 
volatility directly (e.g. percentage volatility), rather than the variance. 

Taking into account the characteristics above, we estimate volatility according to 
APARCH(1,1) model defined by the equation: 

 

𝜎𝜎𝑡𝑡𝛿𝛿 = 𝜔𝜔 + 𝛼𝛼1(|𝜀𝜀𝑡𝑡−𝑖𝑖|− 𝛾𝛾1𝜀𝜀𝑡𝑡−𝑖𝑖)𝛿𝛿 + 𝛽𝛽1�𝜎𝜎𝑡𝑡−𝑗𝑗�
𝛿𝛿

 (1) 
 
where 𝜔𝜔,𝛼𝛼𝑖𝑖 , 𝛾𝛾𝑖𝑖 ,𝛽𝛽𝑗𝑗 ,𝛿𝛿 are unknown model parameters.  

These parameters play an important role in understanding the concept of the 
APARCH model: 
• 𝜔𝜔: This is the so-called "intercept" parameter. It influences the average level of the 

series' conditional variance. 
• 𝛼𝛼1: This parameter measures the impact of the squared error from the previous 

period on today's variance. It determines how much a large (or small) error value 
in the previous period increases (or decreases) the predicted variance today. 

• 𝛾𝛾1: This parameter introduces asymmetry into the model. It determines how 
different the effects on variance of positive and negative errors from the previous 
period are. 

• 𝛽𝛽1: This parameter measures the impact of the predicted variance from the 
previous period on today's variance. It determines how persistent the effects of 
shocks on variance are. 

• 𝛿𝛿: This parameter determines the power to which the conditional standard 
deviation is raised. It allows for the modeling of the variance (or conversely, the 
standard deviation) to any non-necessarily integer power. 

Moreover, the parameters of any APARCH model must satisfy certain conditions 
for the model to be well-defined. For instance, for the APARCH(1,1) model, the 
following conditions must be satisfied: 𝜔𝜔 > 0 , 𝛼𝛼1 ≥ 0, 𝛽𝛽1 ≥ , 𝛼𝛼1 + 𝛽𝛽1 < 1, and 𝛿𝛿 > 0. 
For error term we consider t-Student, skewed t-Student, GED, and skewed GED 
distributions defined by the following probability distribution functions: 

• Student’s t distribution: 

𝑓𝑓(𝑧𝑧|𝑣𝑣) =
Γ�𝑣𝑣+12 �

√𝑣𝑣𝑣𝑣Γ�𝑣𝑣2�
�1 + 𝑧𝑧2

𝑣𝑣
�
−�𝑣𝑣+12 �

       (2) 

where Γ(∙) is the gamma function and 𝑣𝑣 is defined as degrees of freedom (𝑣𝑣 > 0). 

• Skewed Student’s t distribution: 

𝑓𝑓(𝑧𝑧|𝜉𝜉,𝑣𝑣) = 2
𝜉𝜉+(𝜉𝜉)−1 𝑠𝑠{𝑔𝑔[𝜉𝜉(𝑠𝑠𝑧𝑧 + 𝑚𝑚)|𝑣𝑣]Ι(−∞,0)(𝑧𝑧 + 𝑚𝑚𝑠𝑠−1) +

𝑔𝑔 ��𝑠𝑠𝑧𝑧+𝑚𝑚
𝜉𝜉
� �𝑣𝑣� Ι(0,+∞)(𝑧𝑧 + 𝑚𝑚𝑠𝑠−1)}            (3) 
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where 𝑔𝑔(∙ |𝑣𝑣) is the density of symmetric Student’s t distribution, 𝜉𝜉 is the skewness 
parameter defined as 𝜉𝜉2 = 𝑃𝑃(𝑧𝑧≥0|𝜉𝜉)

𝑃𝑃(𝑧𝑧<0|𝜉𝜉)
 and 𝑣𝑣 is defined as degrees of freedom (𝑣𝑣 > 0). 

Moreover, two additional parameters 𝑚𝑚 (for mean) and 𝑠𝑠2 (for variance) must be 
defined: 

𝑚𝑚 = 𝐸𝐸(𝜀𝜀|𝜉𝜉 ) = 𝑀𝑀1(𝜉𝜉 − 𝜉𝜉−1)        (4) 
 

𝑠𝑠2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀|𝜉𝜉) = (𝑀𝑀2 −𝑀𝑀1
2)(𝜉𝜉2 + 𝜉𝜉−2) + 2𝑀𝑀1

2 −𝑀𝑀2    (5) 
 
where 𝑀𝑀𝑟𝑟 = 2∫ 𝑠𝑠𝑟𝑟𝑔𝑔(𝑠𝑠)𝑑𝑑𝑠𝑠+∞

0  is the absolute moment generating function. 
 
• GED distribution: 

𝑓𝑓(𝑧𝑧|𝑣𝑣) = 𝑣𝑣

�2−�
2
𝑣𝑣�
Γ�1𝑣𝑣�

Γ�3𝑣𝑣�
�

1
2
2�1+𝑣𝑣−1�Γ�1𝑣𝑣�

exp � 𝑧𝑧
2𝑣𝑣
�     (6) 

 
where Γ(∙) is the gamma function and 𝑣𝑣 is defined as degrees of freedom (𝑣𝑣 > 0). 
 
• Skewed GED distribution: 

𝑓𝑓(𝑧𝑧|𝜉𝜉, 𝑣𝑣) = 2
𝜉𝜉+(𝜉𝜉)−1 𝑠𝑠{𝑔𝑔[𝜉𝜉(𝑠𝑠𝑧𝑧 + 𝑚𝑚)|𝑣𝑣]Ι(−∞,0)(𝑧𝑧 + 𝑚𝑚𝑠𝑠−1) +

𝑔𝑔 ��𝑠𝑠𝑧𝑧+𝑚𝑚
𝜉𝜉
� �𝑣𝑣� Ι(0,+∞)(𝑧𝑧 + 𝑚𝑚𝑠𝑠−1)}                                   (7) 

 
where 𝑔𝑔(∙ |𝑣𝑣) is the density of symmetric GED distribution, 𝜉𝜉 is the skewness 
parameter defined as 𝜉𝜉2 = 𝑃𝑃(𝑧𝑧≥0|𝜉𝜉)

𝑃𝑃(𝑧𝑧<0|𝜉𝜉)
 and 𝑣𝑣 is defined as degrees of freedom (𝑣𝑣 > 0). 

All parameters of APARCH(1,1) model have been estimated using Maximum 
Likelihood Estimation (MLE).  

For conditional volatility model we compute VaR and ES risk measures using 
formulas: 

𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡𝛼𝛼 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝐹𝐹−1(𝛼𝛼)         (8) 

𝐸𝐸𝑆𝑆𝑡𝑡𝛼𝛼 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡 �
1
𝛼𝛼 ∫ 𝐹𝐹−1(𝑠𝑠)𝑑𝑑𝑠𝑠𝛼𝛼

0 �        (9) 

3.2.  Risk measures for Extreme Value Theory models (EVT) 

Another way to calculate measures of extreme risk is to estimate the conditional 
quantile using Extreme Value Theory (EVT). Extreme Value Theory is a branch of 
statistics dealing with statistical methods and the probabilistic and statistical theory 
related to extreme events, which are often significant in areas such as meteorology, 
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hydrology, finance, insurance, or even structural engineering. One of the key concepts 
in EVT is the Generalized Extreme Value (GEV) distribution. It combines three types 
of extreme value distributions: the Gumbel, Frechet, and Weibull families of 
distributions. In ETV we deal with some extremes. There are two main types of 
extremes [Gumbel, 2004]: 
• Block maxima: This is the maximum value of a block of data. It is like considering 

the maximum rainfall recorded every month, for instance. 
• Peak over threshold: This considers all values over a certain high threshold, not 

just the maxima. 

In Extreme Value Theory certain theorems play a special role. The first one – the 
Fisher-Tippett-Gnedenko theorem – is a critical theoretical foundation of EVT, which 
states that with proper normalization, the maxima of a sequence of random variables 
converge in distribution to one of the three types of extreme value distributions 
mentioned above. The Pickands–Balkema–de Haan theorem is another important 
theoretical foundation of EVT for the peaks-over-threshold approach. This theorem 
states that above a sufficiently high threshold, the excess distribution over that 
threshold can be approximated by a Generalized Pareto distribution [Fałdziński, 2014]. 

EVT provides a rigorous way to make statistical inferences about rare events 
(extreme events). Because of its ability to predict such events, EVT is increasingly being 
applied in various fields such as finance, insurance, and environmental science. 

The extreme value distribution (EVD) can be described using the following density 
function [Gumbel, 2004]: 
 

𝐸𝐸𝑉𝑉𝐷𝐷𝛾𝛾(𝑥𝑥) = �𝑒𝑒𝑥𝑥𝑒𝑒 �−
(1 + 𝛾𝛾𝑥𝑥)−1 𝛾𝛾� � ,  1 + 𝛾𝛾𝑥𝑥 ≥ 0 𝑓𝑓𝑓𝑓𝑉𝑉   𝛾𝛾 ≠ 0

𝑒𝑒𝑥𝑥𝑒𝑒[−𝑒𝑒𝑥𝑥𝑒𝑒(−𝑥𝑥)] ,  𝑥𝑥 ∈ ℝ 𝑓𝑓𝑓𝑓𝑉𝑉   𝛾𝛾 = 0
     (10) 

 
where 𝛾𝛾 defines the extreme value index (EVI). It is the most important parameter 
in this distribution, which measures the thickness of its tail (and thus the probability of 
an extreme event occurring). The heavier the tail, the higher the EVI value. In the case 
of a generalized EVD, the tail index is the shape parameter, which is invariant of 
standardizing the distribution [Németh et al., 2018]. The EVI can be estimated using 
Hill [Hill, 1975] or Picands estimator [Picands, 1975]. In this paper we use the Peaks-
Over-Threshold (POT) approach based on EVT and on the generalized Pareto 
distribution (GPD), which is the limiting tail distribution for a wide variety of 
continuous probability distributions.  

The POT method is a classical approach used in EVT estimation. It consists of 
fitting the GPD distribution to the innovations obtained from filtering returns using 
the model of conditional volatility. For i.i.d. random variable, consider the distribution 
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function of excesses 𝑌𝑌 = 𝑢𝑢 − 𝑍𝑍 for a given threshold 𝑢𝑢, 𝐹𝐹𝑢𝑢(𝑦𝑦) =
𝑃𝑃(𝑌𝑌 = 𝑢𝑢 − 𝑍𝑍 ≤ 𝑦𝑦|𝑍𝑍 < 𝑢𝑢) = [𝐹𝐹(𝑢𝑢)−𝐹𝐹(𝑢𝑢−𝑦𝑦)]

[𝐹𝐹(𝑢𝑢)] , 𝑦𝑦 ≥ 0. The excesses over threshold 𝑢𝑢 
follow GPD distribution, 𝑌𝑌 = 𝑢𝑢 − 𝑍𝑍~𝐺𝐺𝑃𝑃𝐷𝐷(𝜉𝜉,𝛽𝛽): 

𝐹𝐹𝑢𝑢(𝑦𝑦) ≈ 𝐺𝐺𝑃𝑃𝐷𝐷𝜉𝜉,𝛽𝛽(𝑦𝑦) = �
1 − �1 + 𝜉𝜉𝑦𝑦

𝛽𝛽
�
−1𝜉𝜉 , 𝜉𝜉 ≠ 0

1 − exp �− 𝑦𝑦
𝛽𝛽
� , 𝜉𝜉 = 0

      (11) 

𝐺𝐺𝑃𝑃𝐷𝐷𝜉𝜉,𝛽𝛽(𝑦𝑦) provides 𝑦𝑦 ≥ 0 if 𝜉𝜉 ≥ 0 and 0 ≤ 𝑦𝑦 ≤ −𝛽𝛽
𝜉𝜉

 if 𝜉𝜉 < 0, where 𝛽𝛽 > 0 is the scale 

parameter and 𝜉𝜉 is the shape parameter of the tail of the distribution. Consider the 
following equation for points 𝑧𝑧 < 𝑢𝑢 in the left tail of 𝐹𝐹 as: 

𝐹𝐹(𝑧𝑧) = 𝐹𝐹(𝑢𝑢)− 𝐹𝐹𝑢𝑢(𝑢𝑢 − 𝑧𝑧)𝐹𝐹(𝑢𝑢) = 𝐹𝐹(𝑢𝑢)(1− 𝐹𝐹𝑢𝑢(𝑢𝑢 − 𝑧𝑧))     (12) 

Using the proportion of a tailed data 𝑇𝑇𝑢𝑢
𝑇𝑇

, the tail estimator of GPD is of the form: 

𝐹𝐹�(𝑧𝑧) = 𝑇𝑇𝑢𝑢
𝑇𝑇
�1 + 𝜉𝜉 𝑢𝑢−𝑧𝑧

𝛽𝛽�
�
−1
𝜉𝜉�        (13) 

All parameters of EVT model have been estimated using Maximum Likelihood 
Estimation (MLE). 

According to the EVT approach, formulas for calculating VaR and ES are presented 
by: 

𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡𝛼𝛼 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝐹𝐹𝑧𝑧−1(𝛼𝛼) = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡 �𝑢𝑢 + 𝛽𝛽
𝜉𝜉
�1 − � 𝛼𝛼

𝑇𝑇𝑢𝑢
𝑇𝑇

�
−𝜉𝜉

��    (14) 

𝐸𝐸𝑆𝑆𝑡𝑡𝛼𝛼 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡 �
1
𝛼𝛼 ∫ 𝐹𝐹𝑧𝑧−1(𝑠𝑠)𝑑𝑑𝑠𝑠𝛼𝛼

0 � = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡 �
𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡𝛼𝛼

1−𝜉𝜉
− �𝛽𝛽+𝜉𝜉𝑢𝑢

1−𝜉𝜉
��    (15) 

 

3.3.  Backtest for Expected Shortfall 

In this paper we focus on Expected Shortfall backtesting procedure proposed by 
Acerbi and Szekely [Acerbi et al., 2014]. This is one of many possible approaches to 
testing this risk measure proposed in the literature. They present two non-parametric 
tests, both free from assumptions about the probability distribution of the returns. 
The advantage of this approach is that it does not require any particular form of 
theoretical distribution, only the continuity of the distribution function along with 
independence of observation in the sample. To estimate p-values an algorithm based 
on Monte Carlo simulations is used. The first test statistics, for testing ES after VaR, is 
of the form: 

𝑍𝑍1 = 1
𝑁𝑁𝑇𝑇
∑ 𝐼𝐼𝑡𝑡𝑟𝑟𝑡𝑡

𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼

𝑇𝑇
𝑡𝑡=1 − 1          (16) 
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where 𝑁𝑁𝑇𝑇 = ∑ 𝐼𝐼𝑡𝑡𝑇𝑇
𝑡𝑡=1 > 0 with 𝛪𝛪𝑡𝑡 = 𝕀𝕀{𝑟𝑟𝑡𝑡<𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡𝛼𝛼} is the indicator function of VaR 

violations and 𝑇𝑇 is the length of the out-of-sample period.  
The null hypothesis says that 𝑃𝑃𝑡𝑡𝛼𝛼 = 𝐹𝐹𝑡𝑡𝛼𝛼 for all 𝑡𝑡, where 𝐹𝐹𝑡𝑡𝛼𝛼 is the tail of cumulative 

distribution of forecasts at time 𝑡𝑡 when 𝑉𝑉𝑡𝑡 < 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡
𝛼𝛼,𝐹𝐹 and 𝑃𝑃𝑡𝑡𝛼𝛼 is the tail of the unknown 

distribution from which the realized returns 𝑉𝑉𝑡𝑡 are drawn. The risk measures VaR and 
ES under the theoretical and empirical distributions are denoted by 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡

𝛼𝛼,𝑃𝑃, 𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼,𝑃𝑃, 

𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡
𝛼𝛼,𝐹𝐹, 𝐸𝐸𝑆𝑆𝑡𝑡

𝛼𝛼,𝐹𝐹. The alternative hypothesis says that 𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼,𝑃𝑃 ≤ 𝐸𝐸𝑆𝑆𝑡𝑡

𝛼𝛼,𝐹𝐹 for all 𝑡𝑡 and 
𝐸𝐸𝑆𝑆𝑡𝑡

𝛼𝛼,𝑃𝑃 < 𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼,𝐹𝐹 for some 𝑡𝑡, together with 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡

𝛼𝛼,𝑃𝑃 = 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡
𝛼𝛼,𝐹𝐹 for all 𝑡𝑡. We can find that 

the predicted value of 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼 is still correct for alternative hypothesis, according to the 
idea that this test is subordinate to the initial test of VaR. This test is in fact completely 
insensitive to an excessive number of exceptions, since it is the average of the exceptions 
taken over themselves. Assuming these conditions 𝐸𝐸𝐻𝐻0[𝑍𝑍1|𝑁𝑁𝑇𝑇 > 0] = 0 and 
𝐸𝐸𝐻𝐻1[𝑍𝑍1|𝑁𝑁𝑇𝑇 > 0] > 0. 

The second test statistics, for testing ES directly, is of the form: 

𝑍𝑍2 = 1
𝑇𝑇𝛼𝛼
∑ 𝛪𝛪𝑡𝑡𝑟𝑟𝑡𝑡

𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼

𝑇𝑇
𝑡𝑡=1 − 1          (17) 

provided that 𝑁𝑁𝑇𝑇 = ∑ 𝐼𝐼𝑡𝑡𝑇𝑇
𝑡𝑡=1 > 0 with 𝛪𝛪𝑡𝑡 = 𝕀𝕀{𝑟𝑟𝑡𝑡<𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡𝛼𝛼} is the indicator function of VaR 

violations and 𝑇𝑇 is the length of the out-of-sample period.  
The null hypothesis says that 𝑃𝑃𝑡𝑡𝛼𝛼 = 𝐹𝐹𝑡𝑡𝛼𝛼 for all 𝑡𝑡, where 𝐹𝐹𝑡𝑡𝛼𝛼 is the tail of cumulative 

distribution of forecasts at time 𝑡𝑡 when 𝑉𝑉𝑡𝑡 < 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡
𝛼𝛼,𝐹𝐹 and 𝑃𝑃𝑡𝑡𝛼𝛼 is the tail of the unknown 

distribution from which the realized returns 𝑉𝑉𝑡𝑡 are drawn. The alternative hypothesis 
says that 𝐸𝐸𝑆𝑆𝑡𝑡

𝛼𝛼,𝑃𝑃 ≤ 𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼,𝐹𝐹 for all 𝑡𝑡 and 𝐸𝐸𝑆𝑆𝑡𝑡

𝛼𝛼,𝑃𝑃 < 𝐸𝐸𝑆𝑆𝑡𝑡
𝛼𝛼,𝐹𝐹 for some 𝑡𝑡, together with 

𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡
𝛼𝛼,𝑃𝑃 ≤ 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡

𝛼𝛼,𝐹𝐹 for all 𝑡𝑡. As 𝐸𝐸𝐻𝐻0[𝑁𝑁𝑇𝑇] = 𝑇𝑇𝛼𝛼 we have 𝐸𝐸𝐻𝐻0[𝑍𝑍2] = 0 and 𝐸𝐸𝐻𝐻1[𝑍𝑍2] = 0.  
Unlike the 𝑍𝑍1 statistics, the sum of VaR violation event returns is now divided by 

the expected value. Statistics 𝑍𝑍2 will tend to reject the large number of small VaR 
violation events. This leads to a difference in alternative hypothesis between the two 
statistics. Rejecting null hypothesis in 𝑍𝑍2 means rejecting VaR as being correctly 
defined. The advantage of the proposed approach is its relative computational 
simplicity. The disadvantage is the requirement of using Monte Carlo simulations to 
obtain critical values and p-values for the test statistic. 

4.  Empirical study 

The empirical study is based on daily log-returns of gold quoted from January 2015 
to December 2021 on the London Metal Exchange. The research period was divided 
into two sub-periods: 
• sub-period of the models' parameter estimation: 2015–2017, 
• sub-period of the ES forecast: 2018–2021. 
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In this research we investigate risk using Expected Shortfall (ES). Expected Shortfall 
(ES) and Value at Risk (VaR) are both measures used in financial risk management to 
quantify the level of financial risk within a firm or investment portfolio over a specific 
time frame. However, they differ in how they approach this risk assessment. VaR 
measures the maximum loss that will not be exceeded with a certain confidence level. 
In contrast, ES, also known as Conditional VaR (CVaR), estimates the expected loss 
given that a loss is greater than the VaR. It provides a more comprehensive view of risk 
by not only considering the worst-case scenarios but also their potential severity. VaR 
has been criticized for not adequately capturing tail risk, which refers to extreme events 
that have low probability but high impact. ES is designed to overcome this shortfall by 
focusing on the tail of the loss distribution, providing a more accurate measure of 
potential losses in extreme events. ES is a coherent risk measure, meaning it satisfies 
properties such as subadditivity. Subadditivity implies that diversifying a portfolio 
reduces risk, a property that VaR does not have. This can be particularly important for 
risk management, as it encourages appropriate risk diversification. Following the 2008 
financial crisis, many financial regulators have favored ES over VaR as a risk measure. 
For example, the Basel Committee on Banking Supervision recommended the use of ES 
for determining regulatory capital requirements due to its ability to better capture tail 
risk. 

The methodology described in Section 3 was used to construct the models. All risk 
measures were estimated for quantiles of 0.01 and 0.05. Table 1 presents the descriptive 
statistics of the gold return. 

Table 1. Descriptive statistics for gold returns 

Statistics Sub-period 2015–2017 Sub-period 2018–2021 

Mean 0.00012 0.00033 
Standard error 0.00031 0.00027 
Median 0.00007 0.00072 
Standard deviation 0.00852 0.00871 
Coefficient of variation [%] 7019.87 2647.64 
Kurtosis 2.53925 4.80494 
Skewness 0.19121 -0.60820 
Range 0.08087 0.10212 
Minimum -0.03409 -0.05849 
Maximum 0.04678 0.04363 
N 755 1032 
Kolmogorov-Smirnov test for 
normality 

0.07214 0.06243 

p-value <0.001* <0.001* 

* statistical significance at 0.05. 
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The average values of the gold return in both sub-periods are similar, but the 
distributions differ. In the first sub-period (2015–2017), the distribution of gold return 
is skewed to the right, while in the second sub-period it is skewed to the left. The 
distributions are characterized by a high level of kurtosis. Moreover, the hypothesis that 
empirical distributions follow a normal distribution was rejected. Time series and 
empirical distributions of gold return within both sub-periods and along with the fitted 
normal distribution are shown in Figure 1–2. 

 
 

 

 
Figure 1: Time series for gold returns (subperiod 2015–2017 — top, subperiod 2018–2021 — bottom). 
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Figure 2: Empirical distributions with fitted normal densities for gold returns (subperiod 2015–
 2017 — top, subperiod 2018–2021 — bottom). 

 
 

In the next step of the analysis, the parameters of the conditional volatility and EVT 
models were estimated. The original study used a variety of volatility models such as 
GARCH, APARCH, EGARCH, TGARCH, FIGARCH, GARCH-GJR for errors term 
described by normal, t-Student, skewed t-Student, GED and skewed GED distributions. 
However, only for APARCH models the largest number of statistically significant 
parameters and the smallest values of information criterion AIC were obtained. 
Therefore, only the results for APARCH models are presented in this paper. The results 
are presented in Table 2. 
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Table 2: Estimates of model parameters 

Model Parameter 
Error~ST 

Estimates Standard Error p-value 

APARCH(1,1) 

𝜔𝜔 0.0000 0.0000 0.499 
𝛼𝛼1 0.0261 0.0092 0.004* 
𝛾𝛾1 -0.7735 1.1915 0.516 
𝛽𝛽1 0.9495 0.0445 <0.001* 
𝛿𝛿 1.3537 0.4944 0.006* 

EVT 

𝜈𝜈 5.6466 1.2022 <0.001* 
𝜉𝜉 - - - 

𝜉𝜉𝐺𝐺𝑃𝑃𝐺𝐺 0.3431 0.1217 0.001* 
𝛽𝛽𝐺𝐺𝑃𝑃𝐺𝐺 0.5543 0.0862 <0.001* 

Model Parameter 
Error~STskewed 

Estimates Standard Error p-value 

APARCH(1,1) 

𝜔𝜔 0.0000 0.0000 0.495 
𝛼𝛼1 0.0260 0.0089 0.001* 
𝛾𝛾1 -0.7716 1.1706 0.510 
𝛽𝛽1 0.9498 0.0439 <0.001* 
𝛿𝛿 1.3538 0.4898 0.006* 

EVT 

𝜈𝜈 5.6524 1.2025 <0.001* 
𝜉𝜉 0.0095 0.0527 0.856 

𝜉𝜉𝐺𝐺𝑃𝑃𝐺𝐺 0.3592 0.0621 <0.001* 
𝛽𝛽𝐺𝐺𝑃𝑃𝐺𝐺 0.5733 0.0723 <0.001* 

Model Parameter 
Error~GED 

Estimates Standard Error p-value 

APARCH(1,1) 

𝜔𝜔 0.0000 0.0000 0.535 
𝛼𝛼1 0.0185 0.0100 0.006* 
𝛾𝛾1 -0.4033 0.4030 0.3169 
𝛽𝛽1 0.9776 0.0149 <0.001* 
𝛿𝛿 1.3598 0.3554 <0.001* 

EVT 

𝜈𝜈 1.3511 0.1000 <0.001* 
𝜉𝜉 - - - 

𝜉𝜉𝐺𝐺𝑃𝑃𝐺𝐺 0.3318 0.0045 0.001* 
𝛽𝛽𝐺𝐺𝑃𝑃𝐺𝐺 0.5982 0.0788 <0.001* 

Model Parameter 
Error~GEDskewed 

Estimates Standard Error p-value 

APARCH(1,1) 

𝜔𝜔 0.0000 0.0000 0.538 
𝛼𝛼1 0.0181 0.0098 0.007* 
𝛾𝛾1 -0.4070 0.4012 0.310 
𝛽𝛽1 0.9781 0.0148 <0.001* 
𝛿𝛿 1.3705 0.3489 <0.001* 

EVT 

𝜈𝜈 1.3512 0.0995 <0.001* 
𝜉𝜉 0.0121 0.0527 0.818 

𝜉𝜉𝐺𝐺𝑃𝑃𝐺𝐺 0.3644 0.1240 <0.001* 
𝛽𝛽𝐺𝐺𝑃𝑃𝐺𝐺 0.5417 0.0059 <0.001* 

* Statistical significance at 0.05. 
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Most parameters for the estimated conditional volatility models and all parameters 
in the EVT models turned out to be statistically significant. A strong long memory effect 
was observed in the APARCH models (statistically significant, positive values of 𝛽𝛽1). 
Considering the Akaike Information Criterion, the best model is the one in which 
innovations are described by a t-Student distribution.  

Then, the estimated models were used to determine one-day ES forecasts within 
the period of 2018–2021. The average ES value was computed, and the rate of its 
violations was calculated for the fixed quantile level. The convergence of the theoretical 
estimates with the real averaged ES value in the 2018–2021 sub-period was assessed 
using the RMSE. The p-values for both 𝑍𝑍1 and 𝑍𝑍2 statistics in Acerbi and Szekely 
approach were also estimated. The results are presented in Table 3. 
 

Table 1: 1-day Ahead average forecasts of ES and p-values for 𝑍𝑍1 and 𝑍𝑍1 statistics 

Quantile Model 𝐸𝐸𝑆𝑆���� % of violations p-value 𝑍𝑍1 p-value 𝑍𝑍2 RMSE 

0.01 

Empirical -0.0438 0.0100 - - - 
APARCH-St -0.0310 0.0140 0.001* 0.000* 0.0128 
APARCH-Stskewed -0.0316 0.0140 0.003* 0.002* 0.0122 
APARCH-GED -0.0294 0.0160 0.004* 0.000* 0.0144 
APARCH-GEDskewed -0.0300 0.0160 0.002* 0.001* 0.0138 
EVT-St -0.0465 0.0090 0.895 0.970 0.0027 
EVT-Stskewed -0.0474 0.0100 0.910 0.922 0.0036 
EVT-GED -0.0441 0.0090 0.956 0.946 0.0004 
EVT-GEDskewed -0.0450 0.0100 0.944 0.970 0.0012 

0.05 

Empirical -0.0275 0.0500 - - - 
APARCH-St -0.0188 0.0410 0.116 0.417 0.0087 
APARCH-Stskewed -0.0192 0.0430 0.110 0.398 0.0083 
APARCH-GED -0.0179 0.0440 0.084 0.786 0.0096 
APARCH-GEDskewed -0.0182 0.0440 0.104 0.747 0.0093 
EVT-St -0.0282 0.0490 0.851 0.922 0.0007 
EVT-Stskewed -0.0288 0.0480 0.864 0.876 0.0013 
EVT-GED -0.0268 0.0500 0.909 0.898 0.0007 
EVT-GEDskewed -0.0273 0.0510 0.896 0.922 0.0001 

* Statistical significance at 0.05. 
 

The results show that regardless of the quantile level there is no reason to reject the 
null hypothesis in 𝑍𝑍1 and 𝑍𝑍2 tests for models based on EVT. The conclusion seems to 
be logical, because EVT models focus only on values in the tail of the distribution, while 
conditional volatility models are built using all values of the return. Thereby, the high 
quality of ES forecasts for EVT models may be confirmed. The averaged ES values for 
each model calculated in the second sub-period are presented in Figures 3–4. 
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Figure 3:  Empirical vs. theoretical averaged ES forecasts for quantile 0.01. 

 

 
Figure 4:  Empirical vs. theoretical averaged ES forecasts for quantile 0.05. 

 
Both figures show that conditional volatility models underestimate ES values, 

regardless of the quantile level. It is observed that the RMSE values for the EVT models 
are quite low. 
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3.  Conclusions 

In this paper we examined risk using volatility and Extreme Value Theory models. 
We focus on estimating extreme changes in gold returns for which risk is estimated 
using ES. There are several reasons why investing in gold is important. First, gold is 
often seen as a "safe haven" during times of economic and financial uncertainty. When 
other assets such as stocks or bonds experience significant declines, investors often turn 
to gold, which usually leads to a price increase. Second, gold is also seen as an effective 
hedge against inflation. In terms of risk diversification, gold has a low correlation with 
many other asset classes, which means that its price often behaves differently than other 
investments. Therefore, adding gold to a portfolio can help diversify risk. The analysis 
of gold prices is important looking at the global demand. Gold is a unique asset that has 
both investment and consumption value (e.g. in jewelry). The rise of the middle class 
in developing countries like China and India may lead to increased demand for gold. 
The amount of gold in the world is limited, and the extraction process is difficult and 
costly. This limited supply helps maintain gold's value. Moreover, gold is one of the 
most universally accepted assets worldwide and can be sold almost anywhere and can 
be easily bought and sold. 

ES is one of the most popular risk measures. As mentioned in Section 4, there are 
several factors in favour of using this measure instead of VaR. ES is a coherent risk 
measure and provides a more comprehensive view of risk by not only considering the 
worst-case scenarios but also their potential severity. Moreover, ES focuses on the tail 
of the loss distribution, providing a more accurate measure of potential losses 
in extreme events. 

Backtesting provides the means of determining the accuracy of risk forecasts and 
the corresponding risk model. In this paper we used APARCH conditional volatility 
models and Extreme Value Theory models to evaluate ES forecasts of gold returns. 
In addition, we assume different heavy-tailed error distributions. Our study shows that 
the process of gold returns is characterised by significant, unpredictable, and 
heterogeneous volatility (e.g. the apparent effect of the COVID-19 pandemic). 
Moreover, empirical distributions of gold returns were found to be characterized by 
clustering of variance, leptokurtosis, asymmetry, and fat tails (compared to a normal 
distribution). A strong long memory effect (statistically significant positive parameter 
𝛽𝛽1) was observed in the conditional volatility models. We found out that risk estimates 
based on EVT are closer to real values of ES for EVT models than for APARCH models. 
The best results were obtained for EVT-GED and EVT-SkewedGED models. ES 
forecasts obtained for conditional models have p-values close to zero - the null 
hypothesis is rejected due underestimation of risk. Significant differences in p-value 
levels were observed between APARCH conditional models and EVT conditional 
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models. The p-value for the 𝑍𝑍1 statistics in the EVT model means that the average of 
realised ES exceedances is lower than predicted, while for 𝑍𝑍2 additionally that also the 
percentage of exceedances is lower. Thus, the validity of conditional EVT models was 
demonstrated. Nevertheless, these are general conclusions, requiring further in-depth 
research. 
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